?

Log in

No account? Create an account

Previous Entry | Next Entry

Every time you buy a hard drive, some of your money goes to the German government.

That's because in the late 1990s, a physicist named Peter Grünberg at the Forschungszentrum Jülich (Jülich Research Center) made a rather odd discovery.

The Jülich Research Center is a government-funded German research facility that explores nuclear physics, geoscience, and other fields. There's a particle accelerator there, and a neutron scattering reactor, and not one or two or even three but a whole bunch of supercomputers, and a magnetic confinement fusion tokamak, and a whole bunch of other really neat and really expensive toys. All of the Center's research money comes from the government--half from the German federal government and half from the Federal State of North Rhine-Westphalia.

Anyway, like I was saying, in the late 1990s, Peter Grünberg made a rather odd discovery. He was exploring quantum physics, and found that in a material made of several layers of magnetic and non-magnetic materials, if the layers are thin enough (and by "thin enough" I mean "only a few atoms thick"), the material's resistance changes dramatically when it's exposed to very, very weak magnetic fields.

There's a lot of deep quantum voodoo about why this is. Wikipedia has this to say on the subject:

If scattering of charge carriers at the interface between the ferromagnetic and non-magnetic metal is small, and the direction of the electron spins persists long enough, it is convenient to consider a model in which the total resistance of the sample is a combination of the resistances of the magnetic and non-magnetic layers.

In this model, there are two conduction channels for electrons with various spin directions relative to the magnetization of the layers. Therefore, the equivalent circuit of the GMR structure consists of two parallel connections corresponding to each of the channels. In this case, the GMR can be expressed as



Here the subscript of R denote collinear and oppositely oriented magnetization in layers, χ = b/a is the thickness ratio of the magnetic and non-magnetic layers, and ρN is the resistivity of non-magnetic metal. This expression is applicable for both CIP and CPP structures.


Make of that what you will.




Conservatives and Libertarians have a lot of things in common. In fact, for all intents and purposes, libertarians in the United States are basically conservatives who are open about liking sex and drugs. (Conservatives and libertarians both like sex and drugs; conservatives just don't cop to it.)

One of the many areas they agree on is that the governmet should not be funding science, particularly "pure" science with no obvious technological or commercial application.

Another thing they have in common is they don't understand what science is. In the field of pure research, you can never tell what will have technological or commercial application.

Back to Peter Grünberg. He discovered that quantum mechanics makes magnets act really weird, and in 2007 he shared a Nobel Prize with French physicist Albert Fert, a researcher at the French Centre national de la recherche scientifique (French National Centre for Scientific Research), France's largest government-funded research facility.

And it turns out this research had very important commercial applications:



You know how in the 80s and 90s, hard drives were these heavy, clunky things with storage capacities smaller than Rand Paul's chances at ever winning the Presidency? And then all of a sudden they were terabyte this, two terabyte that?

Some clever folks figured out how to use this weird quantum mechanics voodoo to make hard drive heads that could respond to much smaller magnetic fields, meaning more of them could be stuffed on a magnetic hard drive platter. And boom! You could carry around more storage in your laptop than used to fit in a football stadium.

It should be emphasized that Peter Grünberg and Albert Fert were not trying to invent better hard drives. They were government physicists, not Western Digital employees. They were exploring a very arcane subject--what happens to magnetic fields at a quantum level--with no idea what they would find, or whether it would be applicable to anything.




So let's talk about your money.

When it became obvious that this weird quantum voodoo did have commercial possibility, the Germans patented it. IBM was the first US company to license the patent; today, nearly all hard drives license giant magnetoresistance patents. Which means every time you buy a hard drive, or a computer with a hard drive in it, some of your money flows back to Germany.

Conservatives and libertarians oppose government funding for science because, to quote the Cato Institute,

[G]overnment funding of university science is largely unproductive. When Edwin Mansfield surveyed 76 major American technology firms, he found that only around 3 percent of sales could not have been achieved “without substantial delay, in the absence of recent academic research.” Thus some 97 percent of commercially useful industrial technological development is, in practice, generated by in-house R&D. Academic science is of relatively small economic importance, and by funding it in public universities, governments are largely subsidizing predatory foreign companies.


Make of that what you will. I've read it six times and I'm still not sure I understand the argument.

The Europeans are less myopic. They understand two things the Americans don't: pure research is the necessary foundation for a nation's continued economic growth, and private enterprise is terrible at funding pure research.

Oh, there are a handful of big companies that do fund pure research, to be sure--but most private investment in research comes after the pure, no-idea-if-this-will-be-commercially-useful, let's-see-how-nature-works variety.

It takes a lot of research and development to get from the "Aha! Quantum mechanics does this strange thing when this happens!" to a gadget you have in your home. That also takes money and development, and it's the sort of research private enterprise excels at. In fact, the Cato Institute cites many examples of biotechnology and semiconductor research that are privately funded, but these are types of research that generally already have a clear practical value, and they take place after the pure research upon which they rest.

So while the Libertarians unite with the Tea Party to call for the government to cut funding for research--which is working, as government research grants have fallen for the last several years in a row--the Europeans are ploughing money into their physics labs and research facilities and the Superconducting Supercollider, which I suspect will eventually produce a stream of practical, patentable ideas...and every time you buy a hard drive, some of your money goes to Germany.

Modern societies thrive on technological innovation. Technological innovation depends on understanding the physical world--even when it seems at first like there aren't any obvious practical uses for what you learn. They know that, we don't. I think that's going to catch up with us.


Comments

( 4 comments — Leave a comment )
fin9901
Jul. 26th, 2014 01:48 am (UTC)
How many people do you actually in person know that are either conservative or libertarian? From the tone of this piece, I would guess that you could count them on one hand.
tacit
Jul. 26th, 2014 02:24 am (UTC)
Quite a few. These arguments against government investment in pure science are something I hear often. (In fact, one big-L Libertarian friend of mine goes a step further--he thinks the government shouldn't regulate tech industries at all, and even thinks the patent system should be abolished.)
fallingupthesky
Jul. 27th, 2014 05:24 am (UTC)
I think it would be better to split them up into 3 groups.

There's the pure Libertarians, who basically don't give a crap about morality - if there's money to be made or protected, it's all good, and if money isn't involved, it's irrelevant (in the sense that, other than extreme things like murder, there's no reason for laws or regulations to get involved at all).

There's the religious fundamentalists, who are all about their forcing their own narrow brand of morality on others - which they don't all quite agree on - and money is largely irrelevant, except where it keeps their leaders from making more of it, if only because large-scale missionary work and converting the world and overturning heathen laws is darn expensive.

Then there's the crossover group, who are all about money and try to justify it with their narrow morality - basically God rewards the virtuous with power and cash, albeit usually indirectly, and anyone who tries to restrict them from maximizing short-term gains is a tool of Satan. Though they usually wouldn't quite put it that way.

Pretty much all of them like sex on a personal level (most people do) it's just that the two groups which aren't the pure libertarians consider sexual behaviors and practices which don't fit their narrow morality to be evil, and they harp on that so much that it sometimes looks like they claim to hate all sex. I'm not convinced that either of them actually like drugs though. I'm pretty sure the pure fundamentalists don't, at least.

Edited at 2014-07-27 05:30 am (UTC)
tcpip
Jul. 26th, 2014 06:39 am (UTC)
Make of that what you will. I've read it six times and I'm still not sure I understand the argument.

The argument is a poor one because it assumes that core research must generate commercial products, rather than being something a priori to such products.

As your excellent example illustrates.
( 4 comments — Leave a comment )