?

Log in

No account? Create an account

September 3rd, 2014

A few months back, I wrote a blog post about a brain hack that might create a dildo the wearer can actually feel. The idea came to me in the shower. I'd been thinking about the brain's plasticity, and about how it might be possible to trick the brain into internalizing a somatosensory perception that a strap-on dildo is a real part of the body, by using sensors along the dildo connected to tiny electrical stimulation pads worn inside the vagina.

It's an interesting idea, I think. So I blogged about it. I didn't expect the response I got.

I've received a bunch of emails about it, and had a bunch of people tell me "OMG this is the most amazing thing ever! Make it happen!"

So I have, between work on getting the book More Than Two out the door and preparing for the book tour, been chugging away at this idea. Here's an update:

1. I've filed for a patent on the idea. I've received confirmation that the application has been accepted and the process is started.

2. I've talked to an electronics prototyping firm about developing a prototype. Based on feedback from the prototyping firm, I've modified the initial design extensively. The first version I'd thought about was based on the same principle as the Feeldoe; the redesign uses a separate dildo and harness, with an external computer to receive signals from the sensors in the dildo and transmit them to the vaginal insert. The new design looks, and works, something like this. (Apologies for the horrible animated GIF; art isn't really my specialty.)



3. The prototyping firm has outlined a multi-step process to develop a workable, manufacturable device. The process would go something like:

Phase 1: Research and proof of concept. This would include researching designs for the sensors on the dildo and the electrodes on the vaginal insert. It would also include a crude proof-of-concept device that would essentially be nothing more than the vaginal insert connected to a computer programmed to simulate the rest of the device.

The intent at this stage is to see if the idea is even workable. What kind of electrodes could be used? Would the produce the right kind of stimulation? How densely arranged could they be? How small could they be? Would the brain actually be able to interpret sensations produced by the electrodes in a way that would trick the wearer into thinking the dildo was a part of the body? If so, how long would that somatosensory rewiring take?

Phase 2: Assuming the initial research showed the idea to be viable, the next step would be to figure out a sensor design, fabricate a microcontroller to connect the sensors to the electrodes, and experiment with sensor design and fabrication. Would a single sensor provide adequate range of tactile feedback, or would it be necessary to multiplex several sensors (some designed to respond to light touch, others to a heavier touch) together in order to provide a good dynamic range? What mechanical properties would the sensors need to have? How would they be built? (We talked about several potential designs, including piezoelectric, resistive polymer, and fluid-filled devices.) How would the sensors be placed along the dildo?

Phase 3: Once a working prototype is developed, the next step is detail design and engineering. This is essentially the process of taking a working prototype and producing a manufacturable product from it. This includes everything from engineering drawings for fabrication to choosing materials to developing the final version of the software.


So. That's where the project is right now.

The up side? I think this thing could actually work. The down side? It's going to be expensive.

My partner Eve and I have already started investigating ways to make it happen. If we incorporate in Canada, we may be eligible for Canadian financial incentives designed to spur tech research and development.

The fabricating company seems to think the first phase would most likely cost somewhere around $5,000-10,000. Depending on what's learned during that phase, the development of a fully functional prototype might run anywhere from $50,000 to $100,000, a lot of which hinges on design of the sensors, which will likely be the most challenging bit of engineering. They didn't even want to speculate about the cost of going from working prototype to manufacturable product; too many unknowns.

We're discussing the possibility of doing crowdfunding to get from phase 2 to 3, and possibly from phase 1 to 2. It's not likely that crowdfunding is appropriate for the first phase, because we won't have anything tangible to offer backers. Indeed, it's possible that we might spend the initial money and discover the idea isn't workable.

It might be possible to just put the first phase on a credit card or something, though it'd hurt. Neither of us is really in a position to afford it, especially given the money we've spent establishing the publishing house and supporting the book.

Ideally, I'd like to find people who think this idea is worth investigating who can afford to invest in the first phase. If you know anybody who might be interested in this project, let me know!

Also, one of the people at the prototyping company suggested the name "Hapdick." I'm still not sure how I feel about that, but I do have to admit it's clever.

Want to keep up with developments? Here's a handy list of blog posts about it:
First post
Update 1
Update 2
Update 3
Update 4
Update 5
Update 6
Update 7
Update 8
Update 9