Franklin Veaux (tacit) wrote,
Franklin Veaux
tacit

  • Mood:

Random psycholinguistics musings

A couple of days ago, while I was in the shower, I started thinking about an old experiment that one of my former professors had talked about in one of my linguistics classes way back in the dim days of my misspent youth.

If I recall correctly, the experiment, which was done in the 1940s or 1950s and for which I sadly don't have a citation, was one of the endless series of attempts to 'prove' the superiority of whites that were so trendy back then. It involved taking random lists of numbers and asking folks of different races to memorize them.

The results seemed to fit with the racist orthodoxy of the time. Whites and Asians performed best, learning to memorize longer lists of numbers more successfully than, say, Africans.

But another researcher noticed something interesting: success at learning to memorize long lists of numbers varied not with the race of the person doing it so much as with the language of that person. In English, all of the numbers between one and ten are single syllables, except for "seven," which has two. In Japanese (I'm told), all of the numbers between one and ten have one-syllable names. In some other languages, some of the numbers between one and ten have multiple syllables.

People's performance on tests involving memorizing numbers varies not with the race of the person, but with the person's native language, and more specifically with the number of syllables for the various digits in that language. whose native languages were English or Japanese outperformed people whose native language contained many terms for digits that were two or three syllables long, regardless of their race.

When we memorize a list of numbers, it seems, we're not memorizing the shapes of the numbers or even a concept of what the numbers mean; we're memorizing words. We rehearse the list of numbers as though we were hearing it or speaking it. (This definitely seems to be what I do; if I'm trying to remember "813-555-7123," what I do is I say the numbers to myself: "eight one three five five five seven one two three.")

So that got me to thinking about whether or not what psychologists and cognitive scientists call the "short-term buffer," which is the place where we stick stuff we're trying to remember right now, has a limited capacity in terms of syllables as well as in terms of chunks. (The notion that we easily remember lists of seven plus or minus two numbers depends on how we chunk them; I remember "1966," the year I was born, as a single chunk, not as four digits.)

Anyway, while I was washing my hair, I started wondering if the same concept applies to things other than numbers, such as arbitrary lists of shapes. Imagine a list of shapes, laid out and named like so:



Some of these shapes have names that are one syllable long, some have two-syllable names, and some have three-syllable names. To front-load the experiment, the researcher could describe the shapes by name (to ensure that everyone was using the same names for the shapes), or could even give all the test subjects a copy of this chart.

Now, if there is a correlation between the number of elements that can be stored in short-term memory and recalled and the number of syllables that the words for those elements have, then I would expect that people would consistently do better when asked to memorize lists like dot-dot-square-grid-circle-dot-ellipse-square than lists like triangle-triangle-square-rhombus-hexagon-triangle-ellipse-square. Performance should vary not only with the length of the list but also with the number of syllables in the names of the shapes in the list.

So yeah, that's the kind of thing that runs through my head in the morning. Anyone want to fund me?
Tags: neurology, science
Subscribe
  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 16 comments